三角函数的导数 三角函数求导 三角函数的导数公式

2020-11-05 16:58:43
来源:高三网

三角函数的导数有:(sinx)'=cosx、(cosx)'=-sinx、(tanx)'=sec²x=1+tan²x。三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。

1三角函数的导数公式有

(sinx)'=cosx

(cosx)'=-sinx

(tanx)'=sec²x=1+tan²x

(cotx)'=-csc²x

(secx)'=tanx·secx

(cscx)'=-cotx·cscx.

(tanx)'=(sinx/cosx)'=[cosx·cosx-sinx·(-sinx)]/cos²x=sec²x

2基本的求导法则

1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合。

2、两个函数的乘积的导函数:一导乘二+一乘二导。

3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方。

4、如果有复合函数,则用链式法则求导。

(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。

(2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。

关键词: 三角函数求导 导数 公式

[责任编辑:]

为您推荐

时评

内容举报联系邮箱:58 55 97 3 @qq.com

沪ICP备2022005074号-27 营业执照公示信息

Copyright © 2010-2020  看点时报 版权所有,未经许可不得转载使用,违者必究。