奇函数的性质 奇函数的判断方法 奇偶函数的性质

2020-11-09 09:32:59
来源: 高三网

奇函数性质:1、图象关于原点对称;2、满足f(-x) = - f(x);3、关于原点对称的区间上单调性一致;4、如果奇函数在x=0上有定义,那么有f(0)=0;5、定义域关于原点对称(奇偶函数共有的)。

1奇函数

定义

一般的,如果对于函数f(x)的定义域内任意一个x,都有f(-x) = - f(x),那么函数f(x)就叫做奇函数。

判断方法

S1先求定义域,判断定义域是否关于原点对称;

S2当S1成立时,判断f(-x)与-f(x)是否相等;

若相等则函数是奇函数,若不相等则不是奇函数。

判断奇函数先看定义域,后验证关系式。

2奇偶函数的性质

奇函数性质

1、图象关于原点对称

2、满足f(-x) = - f(x)

3、关于原点对称的区间上单调性一致

4、如果奇函数在x=0上有定义,那么有f(0)=0

5、定义域关于原点对称(奇偶函数共有的)

偶函数性质

1、图象关于y轴对称

2、满足f(-x) = f(x)

3、关于原点对称的区间上单调性相反

4、如果一个函数既是奇函数有是偶函数,那么有f(x)=0

5、定义域关于原点对称(奇偶函数共有的)

3常用运算规律

奇函数±奇函数=奇函数

偶函数±偶函数=偶函数

奇函数×奇函数=偶函数

偶函数×偶函数=偶函数

奇函数×偶函数=奇函数

关键词: 奇函数 性质 判断方法

[责任编辑:]

为您推荐

时评

内容举报联系邮箱:58 55 97 3 @qq.com

沪ICP备2022005074号-27 营业执照公示信息

Copyright © 2010-2020  看点时报 版权所有,未经许可不得转载使用,违者必究。