全光通信的网络结构
全光通信网络的结构分为服务层(Service layer)和传送层(Transport layer),网络传送层分为SDH层、ATM层和光传送层。光传送层由光分插复用器(OADM)和光交叉连接(OXC)组成。在光传送层,通过迂回路由波长(Rerouting wavelength),在网络中形成大带宽的重新分配。在光缆断开时,光传送层起网络恢复(Restoration)的作用。在远端,光纤环中的光分插复用器OADM插入/分离所确定的波长通道至ATM复用器,而OXC则连接两个光WDM环路到ATM交换机。
利用波分复用技术的全光网将采用三级体系结构。0级(最低一级)是众多单位各自拥有的局域网(LAN),它们各自连接若干用户的光终端(OT)。每个0级网的内部使用一套波长,但各个0级网多数也可重复使用同一套波长,1级可看作许多城域网(MAN),它们各自设置波长路由器连接若干个0级网。2级可以看作全国或国际的骨干网,它们利用波长转换器或交换机连接所有的1级网。
全光通信系统有哪些特点
全光通信是用户与用户之间的信号传输与交换全部采用光波技术,即数据从源节点到目的节点的传输过程都在光域内进行,而其在各网络节点的交换则采用全光网络交换技术。全光通信与传统的通信网络与现有的光纤通信系统相比,具有其独具的特点:
(1)全光通信是历史发展的必然。电子交换机代替了模拟传输,在数字传输之后,引入了数字交换。采用光传输技术是历史的螺旋上升,光网络是下一步必然的发展对象。
(2)降低成本。在采用电子交换及光传输的体系中,光/电及电/光转换的接口是必要的,如果整个采用光技术可以避免这些昂贵的光电转换器材。而且,在全光通信中,大多采用无源光学器件,从而降低了成本和功耗。
(3)解决了“电子瓶颈”问题。在光纤系统中,影响系统容量提高的关键因素是电子器件速率的限制,如电子交换速率大概为每秒几百兆位,而只在大规模图像传输研究领域达Tbit/s的速率。CMOS技术及ECL技术的交换机系统可以达到Gbit/s范围,不久的将来,采用砷化铸技术可使速率达到几十个Gbit/s以上,但是电子交换的速率也似乎达到了极限。为此,网络需要更高的速度则应采用光交换与光传输相结合的全光通信。
总之,“全光通信”是一种无须进行任何光电变化的全新光波通信。在全光通信系统中,图像和话音信息直接变换为光信号,并在传输媒体中传输。在摄像光学系统、光纤系统和接收放大系统组成的全光通信系统中,由于不要求光电变换,所以没有任何电子元件,信号失真小,能够在100°C以上的高温环境中连续工作,是理想的通信方式。